On the Invariant Reactions in the Mo-Rich Portion of the Mo-Si System

Carlos Angelo Nunes, Gilberto Carvalho Coelho, and Alfeu Saraiva Ramos

(Submitted 16 June 2000; in revised form 16 March 2001)

The Mo-Si system presents two invariant reactions (eutectic and peritectic) in the Mo-rich region; these reactions involve the Liquid, $M_{o_{ss}}$, $M_{0_3}Si$, and $M_{0_5}Si_3$ phases. The results presented in the literature show disagreement about the specific reactions, with two proposals being reported: (1) $L + M_{0_{ss}} \Leftrightarrow M_{0_3}Si$ and $L \Leftrightarrow M_{0_3}Si + M_{0_5}Si_3$; and (2) $L + M_{0_5}Si_3 \Leftrightarrow M_{0_3}Si$ and $L \Leftrightarrow M_{0_{ss}} + M_{0_3}Si$. In order to contribute to this subject, we have produced several Mo-Si alloys (21 to 29 at.% Si) *via* arc melting and evaluated the as-cast microstructures through x-ray diffraction (XRD), scanning electron microscope/backscattered electron image (SEM/BSEI), and energy dispersive x-ray analysis (EDS). The primary phases identified in the different samples were $M_{0_3}Si$, and $M_{0_5}Si_3$. The results have indicated clearly the existence of a eutectic reaction involving the phases $M_{0_3}Si$ and $M_{0_5}Si_3$, confirming the existence of the $L + M_{0_{ss}} \Leftrightarrow M_{0_3}Si$ and $L \Leftrightarrow M_{0_3}Si$ and $M_{0_5}Si_3$ as primary phases, respectively, indicating that the liquid eutectic composition is located between those values.

Introduction

The first study for the determination of the binary Mo-Si phase diagram was carried out by Kieffer and Cerwenka [1952Kie], and their proposed diagram is shown in Fig. 1. They proposed the eutectic $L \Leftrightarrow Mo_3Si + Mo_3Si_2$ and the peritectic $L + Mo_{ss} \Leftrightarrow Mo_3Si$ reactions in the Mo-rich region. In their study, the samples were prepared by hot pressing compacts from pure Mo and Si powders under an argon atmosphere. The samples were equilibrated in the temperature range of 1050 to 1800 °C and analyzed by x-ray diffraction (XRD), metallography, and melting point measurements. In a subsequent work, Nowotny et al. [1954Now] proposed the eutectic reaction $L \Leftrightarrow Mo_3Si + Mo_{ss}$ based on the existence of similar eutectics in the Cr-Si and W-Si systems and a peritectic reaction $L + Mo_3Si_2 \Leftrightarrow Mo_3Si$; the resulting phase diagram is shown in Fig. 2. The Mo₃Si₂ phase was better identified later as Mo₅Si₃ by Aronson [1955Aro], Dauben et al. [1956Dau], and Amberg [1960Amb], who also determined its crystal structure and lattice parameters. It should be pointed out that the work of [1954Now] did not involve experiments. Svechnikov et al. [1971Sve] carried out the most systematic study of this system, using XRD, metallography, and a high-temperature differential thermal analysis apparatus calibrated up to 2450 °C. They confirmed the invariant reactions proposed by Kieffer and Cerwenka [1952Kie], however, replacing the stoichiometry Mo₃Si₂ by Mo₅Si₃. Figure 3 shows the Mo-Si phase diagram from the assessment of Gokhale and Abbaschian [1991Gok], who adopted the invariant reactions proposed by Svechnikov et al. [1971Sve]. However, the studies of Christensen [1983Chr] and Arpaci and Frohberg [1985Arp] were not considered in their assessment, where the suggested invariant reactions are as proposed by Nowotny et al. [1954Now], differing only by replacement of the stoichiometry Mo₃Si₂ with Mo₅Si₃. The work of [1983Chr] involved crystal growth of the Mo₃Si and Mo₅Si₃ phases by the traveling solvent and Czochralski methods, respectively. This work on crystal growth supports the phase diagram shown in Fig. 2 by the fact that, during the growth from an alloy of composition 75Mo-25Si (at.%). the frozen zone in the last region to solidify was a mixture of Mo₃Si and Mo. The work of [1985Arp] was on the determination of mixing enthalpies of liquid Mo-Si alloys. His calculations of the liquidus line starting from pure Mo in the Mo-rich region support the phase diagram shown in Fig. 2. Considering these conflicting results, the aim of this work was to determine the actual invariant reactions taking place in the Mo-rich region of the Mo-Si system through the evaluation of the microstructures of several as-cast alloys with composition in the 21 to 29 at.% Si range.

Experimental Procedure

For this study, samples of nine Mo-Si alloys, each weighing approximately 5 g, were prepared by arc melting pure Mo (minimum 99.95 wt.%) and Si (99.999 wt.%) under pure argon (99.995%) in a water-cooled copper hearth furnace using a nonconsumable tungsten electrode. The silicon contents of the alloys varied from 21 up to 29 at.% Si. All alloys were melted five times to ensure chemical homogeneity. The mass losses during the processing of the alloys were lower than 0.3 wt.%. The as-cast Mo-Si alloys were characterized through XRD, scanning electron microscope/backscattered electron image (SEM/BSEI) and energy dispersive x-ray analyses (EDS). The XRD experiments were performed at

Carlos Angelo Nunes, Gilberto Carvalho Coelho, and **Alfeu Saraiva Ramos,** Faculdade de Engenharia Química de Lorena (FAENQUIL), Departamento de Engenharia de Materiais (DEMAR), Polo Urbo-Industrial, Gleba AI-6, s/n - 12600-000 - Lorena - SP - Brazil. Contact e-mail: cnunes@demar.faenquil.br.

Basic and Applied Research: Section I

Fig. 1 Binary Mo-Si phase diagram from Kieffer and Cerwenka [1952Kie]

Fig. 2 Binary Mo-Si phase diagram from Nowotny et al. [1954Now]

Fig. 3 Binary Mo-Si phase diagram from Gokhale and Abbaschian [1991Gok]

room temperature (Cu K_{α} radiation) from powders (<177 μ m). The XRD patterns were indexed based on the JCPDS [1979JCP] database: Moss (#4-0809), Mo3Si (#4-0814), and Mo₅Si₃ (#34-871).

For the SEM analysis, the alloys were hot mounted, ground using silicon carbide grinding paper in the sequence #220 to #1000, and then polished with colloidal silica. The images were taken at 20 keV in the backscattered electron mode

(BSEI) in a LEO Zeiss 1450VP SEM. The EDS standardless analyses were carried at 20 keV using the Mo L_{α} and Si K_{α} x-ray lines.

Results and Discussion

The Mo79Si21 and Mo78Si22 alloys presented similar microstructures. Figure 4(a) shows an SEM/BSEI micrograph of

430

Si

90 100

Fig. 4 Micrographs (SEM/BSEI) of as-cast Mo-Si alloys: (a) $Mo_{79}Si_{21}$, (b) $Mo_{77}Si_{23}$, (c) $Mo_{74}Si_{26}$, and (d) $Mo_{73}Si_{27}$. Numbers 1 to 6 in (a) indicate points of EDS analysis whose results are given in Table 1

Table 1Results of EDS analysis from the Mo_3Si phase in the as-cast $Mo_{79}Si_{21}$ alloy. The points of analysisare indicated in Fig. 4(a)

Phase	Point of analysis	Mo (at.%)	Si (at.%)
Mo ₃ Si	1	80.4	19.6
	2	80.5	19.5
	3	79.9	20.1
	4	80.6 80.0 79.5	19.4
	5		20.0
	6		19.5

the $Mo_{79}Si_{21}$ alloy. Both alloys presented nonfaceted primary dendrites of the Mo_{ss} phase and the Mo_3Si phase filling out the interdendritic region, suggesting the occurrence of the peritectic reaction L + $Mo_{ss} \Leftrightarrow Mo_3Si$. This result is in agreement with Fig. 3, which indicates that the primary Mo_{ss} phase precipitation region in the liquidus line extends up to 25.72 at.% Si. No sign of a eutectic reaction in these alloys through SEM analysis was observed. It should be pointed out that the Mo₃Si phase may present different contrasts in a given BSEI micrograph, which is related to the crystallographic orientation effect of different grains on the SEM/ BSEI contrast. Table 1 shows the results of the EDS analysis related to points 1 through 6 in Fig. 4(a). Note that the EDS results for the Mo₃Si phase gives a composition lower than 25 at.% Si. This error is likely associated to the use of standardless analysis; however, this value was used as a guide to identify the Mo₃Si phase in the different alloys. Figure 5(a) shows the XRD pattern of the Mo₇₉Si₂₁ alloy. Due to the low volume fraction of the Moss phase in the microstructures and the overlapping of its most intense reflection associated to the (110) plane with the (210) plane of the Mo₃Si phase, the existence of the Moss could not be confirmed based only on XRD data.

Figure 4(b) shows an SEM/BSEI micrograph of the $Mo_{77}Si_{23}$ alloy. Within the resolution of the observation, this alloy presented a Mo_3Si single-phase microstructure. As in the previous case, no sign of a eutectic reaction could be

Fig. 5 XRD pattern of as-cast Mo-Si alloys: (a) $Mo_{79}Si_{21}$, (b) $Mo_{77}Si_{23}$, (c) $Mo_{74}Si_{26}$, and (d) $Mo_{73}Si_{27}$

observed. Based on the phase diagram shown in Fig. 3, this alloy should present a small amount of primary Mo_{ss} phase; however, the possibly existent Mo_{ss} crystals could have been consumed in the course of the L + $Mo_{ss} \Leftrightarrow Mo_3Si$ peritectic reaction. Figure 5(b) shows the XRD pattern of this alloy, where all the reflections from the Mo_3Si JCPDS standard (#4-0814) can be identified. Table 2 shows the results of EDS analyses of the four alloys whose micrographs are shown in Fig. 4(a) to (d).

The Mo₇₆Si₂₄, Mo₇₅Si₂₅, and Mo₇₄Si₂₆ alloys presented only the phases Mo₃Si and Mo₅Si₃ in their microstructures, confirmed by the XRD data (Fig. 5c) and EDS analysis (Table 2). Figure 4(c) shows a micrograph from the Mo₇₄Si₂₆ alloy. The microstructures suggested that the Mo₃Si phase is primary in all of them; however, the previous discussion concerning a possible formation and dissolution of primary Mo_{ss}, most likely in the Mo₇₆Si₂₄ and Mo₇₅Si₂₅ alloys, should be kept in mind. The most significant finding in the case of these alloys was the clear observation of the eutectic reaction involving the Mo₃Si and Mo₅Si₃ phases, as can be observed in Fig. 4(c). As expected, among the three alloys compositions, the Mo₇₄Si₂₆ alloy presented the largest volume of eutectic regions.

The $Mo_{73}Si_{27}$, $Mo_{72}Si_{28}$, and $Mo_{71}Si_{29}$ alloys presented the Mo_3Si and Mo_5Si_3 phases in their microstructures. All

Table 2Results of EDS analysis of as-cast Mo-Sialloys produced in this work

Alloy composition (at.%)	Phase	Mo (at.%)	Si (at.%)
M079Si21	Moss	93.0	7.0
	Mo ₃ Si	80.9	20.1
Mo ₇₇ Si ₂₃	Moss	93.2	6.8
	Mo ₃ Si	80.2	19.8
Mo ₇₄ Si ₂₆	Mo ₃ Si	79.5	20.5
	Mo ₅ Si ₃	66.9	33.1
Mo ₇₃ Si ₂₇	Mo ₃ Si	79.2	20.8
	Mo ₅ Si ₃	66.8	33.2

of them showed nonfaceted primary dendrites of the Mo₅Si₃ phase and a eutectic microstructure formed by the Mo₃Si and Mo₅Si₃ phases in the interdendritic region. As expected, the amount of Mo₅Si₃-phase primary increases in the following order: Mo₇₃Si₂₇, Mo₇₂Si₂₈, and Mo₇₁Si₂₉. Figure 4(d) shows a micrograph from the Mo₇₃Si₂₇ alloy and Fig. 5(d) its XRD pattern. The EDS analysis results are shown in Table 2. As can be noted, the results from the Mo₇₄Si₂₆ and Mo₇₃Si₂₇ alloys confirm that the liquid eutectic composition associated with the L \Leftrightarrow Mo₃Si + Mo₅Si₃ reaction is located between 26 and 27 at.% Si, as proposed by Svechnikov *et al.* [1971Sve].

Conclusions

Based on the microstructural analysis of several arcmelted Mo-Si alloys, it was possible to evaluate the invariant reactions involving the liquid phase in the Mo-rich portion of the Mo-Si system. The results have shown clearly the existence of a eutectic reaction involving the phases Mo₃Si and Mo₅Si₃, indicating the existence of the L + Mo_{ss} \Leftrightarrow Mo₃Si and L \Leftrightarrow Mo₃Si + Mo₅Si₃ reactions. In addition, alloys with compositions 26 at.% Si and 27 at.% Si presented Mo₃Si and Mo₅Si₃ as primary phases, respectively, indicating that the liquid eutectic composition is located between 26 and 27 at.% Si.

References

- **1952Kie:** R. Kieffer and E. Cerwenka: *Z. Metallkd.*, 1952, vol. 43, pp. 101-05.
- 1954Now: H. Nowotny, E. Parthe, R. Kieffer, and F. Benesovsky: Monatsh. Chem., 1954, vol. 85, pp. 255-72.
- 1955Aro: B. Aronson: Acta Chem. Scand., 1955, vol. 9, pp. 1107-10.
- **1956Dau:** C.H. Dauben, D.H. Templeton, and C.E. Meyers: *J. Phys. Chem.*, 1956, vol. 60, pp. 443-45.
- 1960Amb: S. Amberg: Monatsh. Chem., 1960, vol. 91, pp. 412-25.
- **1971Sve:** V.N. Svechnikov, Y.A. Kocherzhinskii, and L.M. Yupko: *Diagrammy Sostoyaniya Metal Sist. Nauka*, 1971, pp. 116-19.
- **1983Chr:** A.N. Christensen: *Acta Chem. Scandi.*, 1983, vol. A37, pp. 519-22.
- **1985Arp:** E. Arpaci and M.G. Frohberg: Z. Metallkd., 1985, vol. 76 (6), pp. 440-44.
- **1991Gok:** A.B. Gokhale and G.J. Abbaschian: *J. Phase Equilibria*, 1991, vol. 12 (4), pp. 493-98.